Hardware Upgrade Forum

Hardware Upgrade Forum (https://www.hwupgrade.it/forum/index.php)
-   Scienza e tecnica (https://www.hwupgrade.it/forum/forumdisplay.php?f=91)
-   -   [Official Thread]Richieste d'aiuto in MATEMATICA: postate qui! (https://www.hwupgrade.it/forum/showthread.php?t=1221191)


8310 19-06-2006 15:08

Salve a tutti. Intanto direi che l'idea di questo topic è carina, speriamo che non diventi troppo dispersivo :)
Veniamo alla mia semplicissima domanda. Sia D un dominio di R^2 limitato dalle curve y=4-x^2 e y=(x-2)^2:



D è regolare rispetto all'asse delle Y?Vorrei solo una conferma. Io direi che NON LO E' perchè:



Invece il dominio è regolare rispetto all'asse x e quindi regolare. Giusto?

8310 19-06-2006 15:10

Quote:

Originariamente inviato da fabiomania87
Come si risolve questo integrale?

int lnx/x


è del tipo
Int f'(x) * f(x) dx

Quindi è di tipo potenza e il risultato è ln^2(x)/2 + c ;)

ChristinaAemiliana 19-06-2006 15:23

Quote:

Originariamente inviato da fabiomania87
Come si risolve questo integrale?

int lnx/x


Ti unisco il thread alla discussione sui problemi di matematica. ;)

dupa 19-06-2006 15:35

vi butto un problema che tempo fa era girato in piazzetta e mi aveva molto incuriosita

ci son 4 coccinelle agli angoli di un quadrato

la coccinella all'angolo 1 si dirige verso la coccinella 2
la coccinella all'angolo 2 si dirige verso la coccinella 3
la coccinella all'angolo 3 si dirige verso la coccinella 4
la coccinella all'angolo 4 si dirige verso la coccinella 1

le coccinelle si incontreranno nel centro del quadrato... ma che distanza hanno percorso ??? (in funzione di lato quadrato e velocità coccinelle)

grazie, ciao

8310 19-06-2006 15:45

Quote:

Originariamente inviato da dupa
vi butto un problema che tempo fa era girato in piazzetta e mi aveva molto incuriosita

ci son 4 coccinelle agli angoli di un quadrato

la coccinella all'angolo 1 si dirige verso la coccinella 2
la coccinella all'angolo 2 si dirige verso la coccinella 3
la coccinella all'angolo 3 si dirige verso la coccinella 4
la coccinella all'angolo 4 si dirige verso la coccinella 1

le coccinelle si incontreranno nel centro del quadrato... ma che distanza hanno percorso ??? (in funzione di lato quadrato e velocità coccinelle)

grazie, ciao

Non ho capito :stordita: Disegnino?

dupa 19-06-2006 16:41

Quote:

Originariamente inviato da 8310
Non ho capito :stordita: Disegnino?


_______________
|1....................2|
|.......................|
|.......................|
|.......................|
|.......................|
|.......................|
|4....................3|
_______________


Al via la 1 si dirige verso la 2
Al via la 2 si dirige verso la 3
Al via la 3 si dirige verso la 4
Al via la 4 si dirige verso la 1

In pratica ogni coccinella seguirà un movimento a simil-spirale e le coccinelle si incontreranno in centro.

Il problema sta nel capire quanta strada percorrono e che traiettoria seguono?

Lucrezio 19-06-2006 16:41

Quote:

Originariamente inviato da fabiomania87
Come si risolve questo integrale?

int lnx/x

Si risolve ricordando che 1/x è la derivata del logaritmo!
dovrebbe venire (ad occhio) 1/2ln^2(x)

8310 19-06-2006 16:57

Quote:

Originariamente inviato da dupa
Il problema sta nel capire quanta strada percorrono e che traiettoria seguono?

Ecco appunto, è proprio quello che non riesco a capire....se si muovono lungo i lati non si incontreranno mai al centro!!!Boh....Il problema NON E' ben posto (imho)

utente222223434556 19-06-2006 17:41

Quote:

Originariamente inviato da Lucrezio
Si risolve ricordando che 1/x è la derivata del logaritmo!
dovrebbe venire (ad occhio) 1/2ln^2(x)

Si me ne ero accorto che 1/x è la derivata del lnx , ma non ricordo la regola che accomuna funzione + la sua derivata.
Non capisco come faccia a venire 1/2ln^2x!!

Me lo spiegheresti?

Ziosilvio 19-06-2006 17:52

Quote:

Originariamente inviato da fabiomania87
non ricordo la regola che accomuna funzione + la sua derivata

La regola di integrazione per sostituzione funziona nel modo seguente.
Supponi di avere due funzioni continue, f e g, e di dover integrare g(f(x))*f'(x).
Puoi porre y=f(x): ma allora dy=f'(x) dx, e l'integrale di g(f(x))*f'(x) dx deve essere uguale all'integrale di g(y) dy.

Ora, supponi che g sia la funzione identità: allora l'espressione di cui sopra è semplicemente f(x)*f'(x), e l'integrale di f(x)*f'(x) dx è semplicemente uguale all'integrale di y dy.

Nel tuo caso, f(x) = log x: sostituisci, e l'integrale ti viene 1/2 x^2 + costanti: sostituisci all'indietro, e ti viene 1/2 log(x)^2 + costanti ;)

Lucrezio 19-06-2006 17:56

Quote:

Originariamente inviato da 8310
Ecco appunto, è proprio quello che non riesco a capire....se si muovono lungo i lati non si incontreranno mai al centro!!!Boh....Il problema NON E' ben posto (imho)

Funziona!
L'abbiamo fatto l'anno scorso in un'esercitazione di cinematica... non trovo gli appunti e non mi ricordo come si fa, magari cerco di procurarmeli o chiedo ad Alexzeta, che dovrebbe averli (in più è anche un malefico fisico :D )

8310 19-06-2006 18:34

Quote:

Originariamente inviato da Lucrezio
Funziona!
L'abbiamo fatto l'anno scorso in un'esercitazione di cinematica... non trovo gli appunti e non mi ricordo come si fa, magari cerco di procurarmeli o chiedo ad Alexzeta, che dovrebbe averli (in più è anche un malefico fisico :D )

Se hai tempo facci sapere la risposta, o meglio il testo che ti ritrovi tu...E magari mandaci il fisico malefico....Daltronde, un chimico ce l'abbiamo (indovina chi è :D ), un matematico pure (ZioSilvio)....solo il fisico ci manca e siamo a posto :cool:

X tutti: nessuno ha un idea sul semplice problema della regolarità del dominio?Oggi ho fatto il compito di Analisi II e giovedì ho l'orale :help:
Ah, a proposito, altro piccolo quesito: risolvere l'equazione differenziale

Codice:

      2          2
    x - 3xy + 2y
y'= --------------    (1)
        2
      x + 2xy

Tralascio la parte teorica (dove sono definite le funzioni etc etc) che comunque sul compito ho riportato con cura e mi concentro sui "conti"
E' un'equazione differenziale omogenea e quindi posso ricondurla a un'equazione a variabili separabili operando la sostituzione y/x = t da cui y = xt' (e quindi y'= x + xt')

Dopo un pò di passaggini (ed è qui che mi sbaglio spesso) giungo a:


Codice:

      1 - 4t      1
y'= ----------- * ---  (2)
      1 + 2t      x

Se 1 - 4t = 0 <=> t=1/4 allora la funzione t1(x)=1/4 è soluzione dell'equazione differenziale (anche qui tralasciamo il discorso teorico, comunque la soluzione è unica per la lipschitzianità della funzione a secondo membro). A questa soluzione corrisponde, per la (1) la funzione y(x)=(1/4)x
Se 1 - 4t diverso da 0 allora le soluzioni dell'equazione differenziale sono definite implicitamente dall'equazione:
Codice:

  _                  _
 |    1 + 2t        |  1
 |  ----------- dt = | --- dt
_|    1 - 4t        _|  t

Risolvendo ottengo:

Codice:

            -t    3
Per la (2): --- - --- log |1-4t| = log |t| + c
            2    8 

Per la (1):  basta sostituire y/x=t

(si potrebbe fare qualche altro passaggio) con c variabile reale.
Ci siamo?

dupa 19-06-2006 18:59

Quote:

Originariamente inviato da 8310
Ecco appunto, è proprio quello che non riesco a capire....se si muovono lungo i lati non si incontreranno mai al centro!!!Boh....Il problema NON E' ben posto (imho)

nessuno ha detto che le coccinelle si muovono lungo i lati del quadrato.
le coccinelle inizialmente stanno sui 4 angoli del quadrato, ma sono poi libere di muoversi come vogliono.
l'unica cosa che fanno è inseguire ognuna la rispettiva coccinella come ho indicato nel mio primo post

8310 19-06-2006 19:27

Quote:

Originariamente inviato da dupa
nessuno ha detto che le coccinelle si muovono lungo i lati del quadrato.
le coccinelle inizialmente stanno sui 4 angoli del quadrato, ma sono poi libere di muoversi come vogliono.
l'unica cosa che fanno è inseguire ognuna la rispettiva coccinella come ho indicato nel mio primo post

Ah ok, infatti mi sembrava strano.....Comunque la traiettoria come hai detto sarà come una sorta di spirale o qualcosa che le assomigli....appena avrò un pò di tempo gli do un'occhiata :) Per ora ho ben altri pensieri :cry: :cry: :cry:

gtr84 19-06-2006 21:39

Quote:

Originariamente inviato da dupa
_______________
|1....................2|
|.......................|
|.......................|
|.......................|
|.......................|
|.......................|
|4....................3|
_______________


Al via la 1 si dirige verso la 2
Al via la 2 si dirige verso la 3
Al via la 3 si dirige verso la 4
Al via la 4 si dirige verso la 1

In pratica ogni coccinella seguirà un movimento a simil-spirale e le coccinelle si incontreranno in centro.

Il problema sta nel capire quanta strada percorrono e che traiettoria seguono?

Bisogna giocare con le funzioni complesse

Anche io penso che le coccinelle percorrano una spirale

l'eq è del tipo Exp[at](Cos(bt)+i Sin(bt))

il problema è trovare a e b in modo da soddisfare le
condizioni all'inizio.

Per integrare si trova il differenziale di linea, che non mi
ricordo, ma bastava cansiderare la parte reale e la parte
immaginaria come componenti di un vettore reale a 2 dimensioni

ChristinaAemiliana 19-06-2006 22:13

Visto che vi state divertendo, mettiamo in rilievo! :D

Ziosilvio 20-06-2006 11:31

Quote:

Originariamente inviato da dupa
ci son 4 coccinelle agli angoli di un quadrato

la coccinella all'angolo 1 si dirige verso la coccinella 2
la coccinella all'angolo 2 si dirige verso la coccinella 3
la coccinella all'angolo 3 si dirige verso la coccinella 4
la coccinella all'angolo 4 si dirige verso la coccinella 1

le coccinelle si incontreranno nel centro del quadrato... ma che distanza hanno percorso ??? (in funzione di lato quadrato e velocità coccinelle)

Indovinello molto :old: e almeno altrettanto :cool:

Supponi che, oltre alle coccinelle, ci sia un bruco che va dall'angolo 1 all'angolo 2 con la stessa velocità delle coccinelle.

Che differenza c'è tra l'osservazione del moto della coccinella 1 fatta dalla coccinella 2, e l'osservazione del moto del bruco fatta dall'angolo 2?
Nessuna.
Infatti, in ciascuno dei due casi, ad ogni istante il vettore velocità ha modulo costante, direzione lungo la congiungente dei due punti, e verso in direzione del punto da cui si osserva.

Quindi, la distanza percorsa dalla coccinella 1 --- e, per simmetria, dalle altre --- deve essere uguale a quella percorsa dal bruco, ossia al lato del quadrato.

utente222223434556 20-06-2006 11:37

Domanda sulle funzioni inverse:

So che una funzione è invertibile se monotona. Quindi per verificare faccio la derivata prima e vedo se è sempre positiva o negativa.

Al max limito il dominio e la faccio diventare invertibile.

Quello che non so fare è trasformare una funzione nella sua inversa. Come si fa?
Basta semplicemente sostituire le x alle y nella forma?
E' possibile che sia così facile?

Ed il grafico? E' simmetrico rispetto alla bisettrice vero?

PS: i soliti dubbi pre seconda prova scientifico :p

Lucrezio 20-06-2006 12:57

Quote:

Originariamente inviato da fabiomania87
Domanda sulle funzioni inverse:

So che una funzione è invertibile se monotona. Quindi per verificare faccio la derivata prima e vedo se è sempre positiva o negativa.

Al max limito il dominio e la faccio diventare invertibile.

Quello che non so fare è trasformare una funzione nella sua inversa. Come si fa?
Basta semplicemente sostituire le x alle y nella forma?
E' possibile che sia così facile?

Ed il grafico? E' simmetrico rispetto alla bisettrice vero?

PS: i soliti dubbi pre seconda prova scientifico :p

Ahimé purtroppo non è sempre così facile. Una volta che hai verificato che la tua funzione è invertibile puoi provare a risolvere l'equazione f(x) = k, con k nell'immagine di f: se riesci ad isolare la x hai la tua inversa x=g(k) (chiaramente la rappresenti con la k in ascisse e la x in ordinate! il nome delle lettere non conta!).
Molto spesso però non si riesce a trovare un'espressione analitica per le funzioni inverse... prova, ad esempio, ad invertire xe^x!

Ziosilvio 20-06-2006 13:16

Quote:

Originariamente inviato da fabiomania87
So che una funzione è invertibile se monotona.

Una funzione continua è invertibile se e solo se è monotona.
Senza il requisito di continuità, la faccenda cambia: pensa ad esempio a f : [0,1] --> [0,1] tale che f(x)=x se x è razionale, f(x)=1-x altrimenti.
Allora f è invertibile (ed è inversa di se stessa), ma non è monotona. E d'altronde, è discontinua in ogni punto tranne x=1/2.
Quote:

Quello che non so fare è trasformare una funzione nella sua inversa.
Infatti non esiste nessun metodo generale per ricavare un'espressione dell'inversa di f, data un'espressione di f.
Al massimo, puoi ricordare che, se f e g sono una l'inversa dell'altra, e se y=f(x), allora x=g(y).
Ad esempio, se hai y=sqrt(x-1), allora hai anche y^2=x-1 e quindi y^2+1=x. Pertanto, l'inversa di f(x)=sqrt(x-1) è g(y)=y^2+1.
Quote:

Ed il grafico? E' simmetrico rispetto alla bisettrice vero?
Il grafico dell'inversa di f è il riflesso del grafico di f rispetto alla bisettrice dei quadranti dispari.
Te ne accorgi semplicemente pensando che, per passare da f alla sua inversa, devi scambiare i ruoli di x e y.


Tutti gli orari sono GMT +1. Ora sono le: 01:23.

Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Hardware Upgrade S.r.l.