Hardware Upgrade Forum

Hardware Upgrade Forum (https://www.hwupgrade.it/forum/index.php)
-   Scienza e tecnica (https://www.hwupgrade.it/forum/forumdisplay.php?f=91)
-   -   [Official Thread]Richieste d'aiuto in MATEMATICA: postate qui! (https://www.hwupgrade.it/forum/showthread.php?t=1221191)


T3d 09-01-2007 19:34

Quote:

Originariamente inviato da Ziosilvio
E' un modo come un altro per dire: stabilire per quali valori di B la funzione, definita per x reale non nullo,



ammette limite finito e, detto A tale limite, calcolarlo.

Ora: per x che tende a 0, sin x e tan x vanno a 0 come x, nel senso che



Quindi il limite A esiste se e solo se esiste il limite di



e i due limiti sono uguali.
Vai avanti...

ok gentilissimi come sempre :D

cmq mi sono impiccato al compitino cercando di risoverlo con mac laurin :cry:

pazuzu970 09-01-2007 20:47

Quote:

Originariamente inviato da T3d
ok gentilissimi come sempre :D

cmq mi sono impiccato al compitino cercando di risoverlo con mac laurin :cry:

:eek: :eek: :eek:

;)

Python 09-01-2007 22:37

ovviamente non è 2^(senx+1) / (senx+1)

vero?



oddio e io c'ho l'esame forse venerdi....

pazuzu970 09-01-2007 22:41

Quote:

Originariamente inviato da marcio3000
come si risolve
integrale di (2^senx)* cosx ?

Semplice.

Osserva che cosx dx è il differenziale di senx, ovvero si ha:

d(senx) = cosx dx

Dunque abbiamo:

Int((2^senx)* cosx dx) = Int((2^senx)dsenx)

e ponendo senx = t (ma non sarebbe neppure necessario...) l'integrale diventa banale (basta che trasformi 2^t in e^(t*ln2) e risolvi...

;)

Python 09-01-2007 22:49

aspetta dunque
vediamo se ci riesco


int ( (e^((senx + 1)ln2)) * cosx )


primitiva: e^(senxln2 + ln2)
perchè derivata viene

(e^(senxln2 + ln2)) * (cosxln2 + 0)


quindi si dovrebbe per esigenze di semplicità moltiplicare l'integrale per ln2 e dividerlo fuori per ln2 giusto?
cioè

1/ln2 * int ( (e^((senx + 1)ln2)) * cosxln2)


abbi pietà il mio prof m'ha spiegato tutti gli integrali in una settimana a metà dicembre, e io li ho studiati solo oggi in 30 minuti :D

Python 09-01-2007 22:58

uhm no aspe sono un'idiota :D

non so perchè ma l'ho fatto partendo da int (2^(senx + 1) * cosx dx)

invece il due era elevato solo a senx


ma anche ammesso che fosse come ho fatto io, ho fatto giusto no?

pazuzu970 09-01-2007 23:03

Quote:

Originariamente inviato da Python
uhm no aspe sono un'idiota :D

non so perchè ma l'ho fatto partendo da int (2^(senx + 1) * cosx dx)

invece il due era elevato solo a senx


ma anche ammesso che fosse come ho fatto io, ho fatto giusto no?


Se fosse stato (senx + 1) ad esponente cambiava poco, perché 2^(senx + 1) è come dire: 2*2^senx, per cui devi solo portare davanti il segno di integrale la costante moltiplicativa 2.

Scusami, i tuoi passaggi al momento non ho la lucidità di analizzarli. Segui la strada che ti ho dato e giungerai alla soluzione...

>|HaRRyFocKer| 10-01-2007 11:25

Salve ragazzi, sto sempre preparando algebra...
Ora facendo i reticoli mi è comparso un dubbio riguardo la cosa più stupida del mondo... Minoranti e maggioranti!

Guardando su Wikipedia ( http://it.wikipedia.org/wiki/Maggiorante_e_minorante )
al primo esempio, chi mi spiega perchè i maggioranti sono {3,4,5...} e non {4,5...} ?
Perchè il 3 è maggiorante ma ad esempio l'unico minorante è 0?
Insomma, dato un insieme X' incluso in X, quand'è che i minoranti di X' possono appartenere ad X' stesso? Di conseguenza sup e inf, quando possono appartenere all'insieme X' ?

Grazie a tutti...

T3d 10-01-2007 11:41

Quote:

Originariamente inviato da pazuzu970
:eek: :eek: :eek:

;)

non deridermi :cry:

saluti :cincin:

Ziosilvio 10-01-2007 12:18

Quote:

Originariamente inviato da >|HaRRyFocKer|
Guardando su Wikipedia ( http://it.wikipedia.org/wiki/Maggiorante_e_minorante )
al primo esempio, chi mi spiega perchè i maggioranti sono {3,4,5...} e non {4,5...} ?
Perchè il 3 è maggiorante ma ad esempio l'unico minorante è 0?

Perche' il primo esempio e' sbagliato: i maggioranti dell'insieme {1,2,3} sono i numeri da 3 in su e i suoi minoranti sono quelli da 1 in giu'.
Infatti, ogni numero da 3 in su non e' inferiore ad alcun elemento di {1,2,3}, e ogni numero da 1 in giu' non e' superiore ad alcun elemento di {1,2,3}.
(Oltretutto, ogni insieme non vuoto di numeri naturali e' dotato di minimo.)
Quote:

dato un insieme X' incluso in X, quand'è che i minoranti di X' possono appartenere ad X' stesso? Di conseguenza sup e inf, quando possono appartenere all'insieme X' ?
Questo, ovviamente, dipende da X'.

>|HaRRyFocKer| 10-01-2007 14:48

Quote:

Originariamente inviato da Ziosilvio
Perche' il primo esempio e' sbagliato: i maggioranti dell'insieme {1,2,3} sono i numeri da 3 in su e i suoi minoranti sono quelli da 1 in giu'.
Infatti, ogni numero da 3 in su non e' inferiore ad alcun elemento di {1,2,3}, e ogni numero da 1 in giu' non e' superiore ad alcun elemento di {1,2,3}.
(Oltretutto, ogni insieme non vuoto di numeri naturali e' dotato di minimo.)

Ok perfetto menomale... :) In definitiva 3 è massimo, maggiorante ed estremo superiore, mentre 1 è minimo, minorante ed estremo inferiore.

Quote:

Originariamente inviato da Ziosilvio
Questo, ovviamente, dipende da X'.

Mmm... Ok...

Allora... Dato un insieme S={1,2,3} e un insieme T={1,2}, c'è un'applicazione
f: X appartenente a P(S) --> |XΩT| (intersezione, non sono riusicto a trovarla :stordita: ) appartenente a {0,1,2},
una relazione d'ordine (parzialmente ordinata) in P(S):
X*Y<=> |XΩT|<|YΩT| v X=Y.

Ora l'esercizio in questione mi chiede di dimostrare perchè (P(S), *) non è un reticolo... Sapendo quand'è che un reticolo si chiama tale, me lo sapresti dimostrare tu perchè?
Ti ringrazio, ti farò una statua d'oro... :D

D4rkAng3l 10-01-2007 18:28

PROBLEMA DI MASSIMI E MINIMI
 
mmm mi potete dire se questo esercizio di massimi e minimi è svolto correttamente:

"Si consideri un quadrato di lato 1 ed i triangoli iscritti con base su di un lato e vertice sul lato opposto. Tra tutti questi triangoli trovare quello di perimetro massimo"

Vabbè chiamo AB la base del quadrato che mi diventa anche la base del mio triangolo e C il vertice del triangolo che si sposta sul lato opposto del quadreato.

Se uno si fà il disegno il problema risulta essere deficiente in quanto è chiaro che ci sono due triangoli di perimetro massimo e sono quelli aventi i vertici C ai due estremi del lato del quadrato.

Volendo usare un po' di analisi (purtroppo glielo dovrò fare così sul compito di Martedi :cry: )

dico che x € [0,1] quindi x si può spostare da 0 ad 1 passando per tutti i valori intermedi Reali.

Mediante il teorema di pitagora trovo quanto valgono i due lati obliqui in funzione di x e cioè:

AC = (1 + x^2)^(1/2)
BC = (x^2 - 2x + 2)^(1/2)

quindi la funzione del perimetro è:

2p = f(x) = 1 + (x^2 - 2x + 2)^(1/2) + (1 + x^2)^(1/2)

Svolgendo le dovute semplificazioni la derivata prima risulta essere:

f ' (x) = [(x^2 -2x + 2)^(-1/2)]*(x-1) + x*(x^2 + 1)^(-1/2)

Ora studiarsi una robba del genere >= 0 è un casino...da ammazzarsi di conti...e quà sorgono i casini...

La mia idea per evitare di ammazzarmi di conti è questa...guardo f(x)

In f(x) sommo quantità sempre POSITIVE perchè (facilmente dimostrabile):

1 > 0
(x^2 - 2x + 2)^(1/2) > 0
(1 + x^2)^(1/2) > 0

quindi potrei pensare che la mia funzione è monotona crescente in qualche intervallo perchè all'aumentare di x dovrebbe aumentare il valore di f(x)

Facendo qualche altra considerazione:

1) Asintoticamente per x molto piccole o x molto grandi la funzione andrà comunque a + infinito

2) Guardando il disegno del quadrato ci si accorge immediatamente che avrò un punto critico in x = 1/2

mettendo insieme 1 e 2 posso dire che la funzione ha un minimo assoluto in
x= 1/2 quindi considero il mio intervallo e calcolo nei punti ai bordi dell'intervallo [0, 1]
quindi i due triangoli di perimetro massimo saranno quello avente vertice in
x = 0 e quello avente vertice in x = 1
Se si calcola la funzione f(x) con x=0 e x=1 infatti il risultato è il medesimo

Dite che può andar bene come metodo risolutivo o è molto porcoso?
Cioè studiare quella derivata è un incubo perchè avrei dovuto fare l'MCD..avrei avuto radici sopra e sotto...un incuboooo...è molto porcoso farlo come l'ho fatto o come raggionamento può filare

mmm l'esercizio correttamente svolto varrebbe 8 punti...quanti me ne dareste?

Grazie
Andrea

pazuzu970 10-01-2007 19:25

Quote:

Originariamente inviato da D4rkAng3l
mmm mi potete dire se questo esercizio di massimi e minimi è svolto correttamente:

"Si consideri un quadrato di lato 1 ed i triangoli iscritti con base su di un lato e vertice sul lato opposto. Tra tutti questi triangoli trovare quello di perimetro massimo"

Vabbè chiamo AB la base del quadrato che mi diventa anche la base del mio triangolo e C il vertice del triangolo che si sposta sul lato opposto del quadreato.

Se uno si fà il disegno il problema risulta essere deficiente in quanto è chiaro che ci sono due triangoli di perimetro massimo e sono quelli aventi i vertici C ai due estremi del lato del quadrato.

Volendo usare un po' di analisi (purtroppo glielo dovrò fare così sul compito di Martedi :cry: )

dico che x € [0,1] quindi x si può spostare da 0 ad 1 passando per tutti i valori intermedi Reali.

Mediante il teorema di pitagora trovo quanto valgono i due lati obliqui in funzione di x e cioè:

AC = (1 + x^2)^(1/2)
BC = (x^2 - 2x + 2)^(1/2)

quindi la funzione del perimetro è:

2p = f(x) = 1 + (x^2 - 2x + 2)^(1/2) + (1 + x^2)^(1/2)

Svolgendo le dovute semplificazioni la derivata prima risulta essere:

f ' (x) = [(x^2 -2x + 2)^(-1/2)]*(x-1) + x*(x^2 + 1)^(-1/2)

Ora studiarsi una robba del genere >= 0 è un casino...da ammazzarsi di conti...e quà sorgono i casini...

La mia idea per evitare di ammazzarmi di conti è questa...guardo f(x)

In f(x) sommo quantità sempre POSITIVE perchè (facilmente dimostrabile):

1 > 0
(x^2 - 2x + 2)^(1/2) > 0
(1 + x^2)^(1/2) > 0

quindi potrei pensare che la mia funzione è monotona crescente in qualche intervallo perchè all'aumentare di x dovrebbe aumentare il valore di f(x)

Facendo qualche altra considerazione:

1) Asintoticamente per x molto piccole o x molto grandi la funzione andrà comunque a + infinito

2) Guardando il disegno del quadrato ci si accorge immediatamente che avrò un punto critico in x = 1/2

mettendo insieme 1 e 2 posso dire che la funzione ha un minimo assoluto in
x= 1/2 quindi considero il mio intervallo e calcolo nei punti ai bordi dell'intervallo [0, 1]
quindi i due triangoli di perimetro massimo saranno quello avente vertice in
x = 0 e quello avente vertice in x = 1
Se si calcola la funzione f(x) con x=0 e x=1 infatti il risultato è il medesimo

Dite che può andar bene come metodo risolutivo o è molto porcoso?
Cioè studiare quella derivata è un incubo perchè avrei dovuto fare l'MCD..avrei avuto radici sopra e sotto...un incuboooo...è molto porcoso farlo come l'ho fatto o come raggionamento può filare

mmm l'esercizio correttamente svolto varrebbe 8 punti...quanti me ne dareste?

Grazie
Andrea


Andiamo per gradi.

E' vero, Pascal diceva che "il cuore ci rassicura della giustezza dei passaggi matematici", ma Pascal era Pascal e nel '600 il calcolo differenziale era ancora un terreno alquanto accidentato!
Mai fare ragionamenti "a naso" in matematica! O comunque, utilizzare sempre moooolta cautela!

La derivata a me viene:

p'(x) = x/rad(x^2+1) + (x - 1)/rad(x^2 -2x +2)

con x che varia in [0, 1].

Se poni p'(x) maggiore o eguale a zero e riduci ad un'unica frazione, ti accorgi che il denominatore è sempre positivio, per cui il segno dipende solo dal numeratore, e ottieni:

p'(x) >= 0 se e solo se xrad(x^2-2x+2)>=(1-x)rad(x^2+1)

Quadrando ambo i membri (nessun problema poiché ogni fattore è non negativo) e facendo qualche conto trovi:

x>=1/2

Ne viene che p'(x) decresce in [0,1/2[ e cresce in ]1/2, 1], annullandosi in x=1/2.

In x=1/2 si ha allora un minimo (triangolo isoscele inscritto nel quadrato nel modo detto); gli estremi dell'intervallo sono invece punti di massimo assoluto (triangoli rettangoli aventi come cateti i lati del quadrato).

A me non sembra che ci fossero conti complicati. Basta non fare errori ed avere le idee chiare.

Di sicuro esistono altri modi di risolvere il problema, anche più eleganti, ma va bene anche così.

Ciao.

Ziosilvio 11-01-2007 11:40

Quote:

Originariamente inviato da >|HaRRyFocKer|
Dato un insieme S={1,2,3} e un insieme T={1,2}, c'è un'applicazione
f: X appartenente a P(S) --> |XΩT| (intersezione, non sono riusicto a trovarla :stordita: ) appartenente a {0,1,2},
una relazione d'ordine (parzialmente ordinata) in P(S):
X*Y<=> |XΩT|<|YΩT| v X=Y.

Ora l'esercizio in questione mi chiede di dimostrare perchè (P(S), *) non è un reticolo... Sapendo quand'è che un reticolo si chiama tale, me lo sapresti dimostrare tu perchè?

Un insieme parzialmente ordinato e' un reticolo, se ogni suo sottoinsieme non vuoto ammette un estremo superiore e un estremo inferiore.
Considera la relazione *: fai presto a vedere che, se X*vuoto, allora X=vuoto, e se X*{3}, allora X={3}. Ma allora, dato che {3} non e' vuoto, il sottoinsieme {vuoto,{3}} di P({1,2,3}) non puo' avere un estremo inferiore.

pazuzu970 11-01-2007 14:17

http://www.manageritalia.it/content/...%202006/20.pdf


Da leggere, e poi riflettere...

;)

>|HaRRyFocKer| 11-01-2007 14:43

Quote:

Originariamente inviato da Ziosilvio
Un insieme parzialmente ordinato e' un reticolo, se ogni suo sottoinsieme non vuoto ammette un estremo superiore e un estremo inferiore.
Considera la relazione *: fai presto a vedere che, se X*vuoto, allora X=vuoto, e se X*{3}, allora X={3}. Ma allora, dato che {3} non e' vuoto, il sottoinsieme {vuoto,{3}} di P({1,2,3} non puo' avere un estremo inferiore.

Che deficiente che sono, mi ero proprio dimenticato l'insieme vuoto!!! :muro:
Ti ringrazio... :cool:

Python 11-01-2007 15:47

ho appena dato il mio primo esame universitario (escludendo conoscenze informatiche che ho dato grazie all'ECDL)

ovviamente matematica generale, facoltà di economia e amministrazione a palermo

però ho preso un voto di m***a, 20, perchè ci sono stati un miscuglio di eventi che mi hanno danneggiato (perchè obiettivamente, ero più preparato di tanti altri che se ne sono andati con 26)

l'ho accettato perchè di sti tempi non si butta niente, però che cavolo mi ero partito per fare il colpaccio del 30

pazuzu970 11-01-2007 18:05

Quote:

Originariamente inviato da Python
ho appena dato il mio primo esame universitario (escludendo conoscenze informatiche che ho dato grazie all'ECDL)

ovviamente matematica generale, facoltà di economia e amministrazione a palermo

però ho preso un voto di m***a, 20, perchè ci sono stati un miscuglio di eventi che mi hanno danneggiato (perchè obiettivamente, ero più preparato di tanti altri che se ne sono andati con 26)

l'ho accettato perchè di sti tempi non si butta niente, però che cavolo mi ero partito per fare il colpaccio del 30


I voti sono relativi... l'importante è essere soddisfatti della propria prestazione (ed essere onesti con se stessi).

Mai aspettarsi giustizia o correttezza all'università - un po' come nella vita. Nessuno, in quel luogo, si prende la briga di analizzare nel dettaglio lo svolgimento di un esercizio, nessuno pondera con cognizione gli esercizi da assegnare ed il modo in cui valutarli, nessuno sa cosa significhi fare "didattica".

Forse ci sarà qualche eccezione da qualche parte, ma è appunto un'eccezione, e conferma solo questa triste regola...

Poi vorrei capire che senso hanno certi esercizi terribilmente calcolosi, se servano forse a verificare l'assimilazione di un argomento o l'acquisizione di una competenza. Non credo proprio, visto che si potrebbe verificare entrambe le cose con esercizi semplici ma significativi, ovvero esercizi semplici ma non banali. Gli esercizi molto tecnici e complicati assegnati allo scritto hanno solo un obiettivo: fare selezione ed avere meno studenti da interrogare all'orale.

Certo, una verifica scritta è importante perché "fotografa" il grado di preparazione dell'allievo, che da parte sua magari non si è applicato come avrebbe dovuto; ma è pur vero che, in molti altri casi questa preparazione è carente perché gli esempi svolti a lezione, gli esercizi e la stessa teoria non hanno la chiarezza che dovrebbero avere. E soprattutto non stimolano l'allievo ad impossessarsi di quella capacità di "confutare" che, come osservava ottimamente Karl Popper, è sempre il gradino più elevato da raggiungere nello studio delle scienze esatte.

In matematica, le cose veramente interessanti sono sempre le più semplici, quelle che puoi spiegare all'uomo della strada, per dirla con Chasles! E, vedi caso, sono anche quelle che affinano il pensiero e "spalancano" una grande quantità di porte su argomenti relativamente più "complessi"... - questo è, almeno, il mio punto di vista.

Complimenti! E in bocca al lupo per il seguito...

;)

flapane 11-01-2007 18:17

sei grande... ;)

D4rkAng3l 12-01-2007 10:59

mmm stimare un valore con Taylor
 
Oddio mertedi secondo esonero di analisi...non sò come ma DEVO passarlo !!!

Vi prego datemi una mano ormai stò alla frutta :cry:

Stimare arcsen(1/2) con la precisione di 1/2 (quindi pari al 50%)

Allora lui in classe lo ha iniziato così....

Ha detto...faccio lo sviluppo di arcsen(x) considerando l'intervallo [0, 1/2] quindi
X0=0 X=1/2

Mi pare che la derivata prima si annulli quindi se mi fermo alla derivata seconda potrei approssimare arcsen(X) con X

e poi dice che:

f ''(x) = x(1-x^2)^(-3/2) allora

|f ''(x)| <= (1/2)*(3/4)^(-3/2)

da quello che ho intuito visto che sommo la derivata seconda dice che se mi fermo ad approssimare a prima della derivata seconda l'errore che commetto è sicuramente minore o unguale al valore massimo della derivata seconda che stò ignorando (ci può stare come discorso?) in quanto sostituisco x con il valore dell'intervallo che mi fà ottenere il massimo nella derivata seconda

facendo i conti ottengo che:

|f ''(x)| <= (1/2)*(8/rad(27)) che è circa pari a: 0.76
Ora visto che voglio stimare 6*arcsen(1/2) allora anche la quantità massima che potrei trascusare viene moltiplicata per 6 quindi è circa pari a:

0,76*6 = 4,56 il chè non va bene perchè volevo approssimare con la precisione di 1/2 quindi dovrei provare aggiungendo un ordine.

Apparte che aggiungengo altri ordini non mi viene ma la cosa non mi quadra...
perchè in classe l'ha risolto così?

Io sapevo che l'errore commesso era pari a:
(M/(n+1)!)*(X-X0)^(n+1) appunto dalla formula di Taylor

Insomma non ne riesco ad uscire fuori...

1) Il raggionamento che ha fatto lui in classe fila? posso scrivermi lo sviluppo di arcsen(x) considerare fino a un certo ordine e dire che l'errore che commetto è sicuramente minore o uguale al valore massimo che avrebbe l'ordine successivo? :eek:

2) Posso usare la seconda formula che ho scritto alla fine per stimare l'errore con precisione un mezzo in questo esercizio?

Se non è chiedere tropo all'atto pratico mi dite come si fà? non ci riesco è da ieri che mi ci impicco e mi sento stupido.

Grazie
Andrea

P.S: spero per voi e per me di passarlo il 16 così finisce questa agonia da forum


Tutti gli orari sono GMT +1. Ora sono le: 02:13.

Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Hardware Upgrade S.r.l.