Hardware Upgrade Forum

Hardware Upgrade Forum (https://www.hwupgrade.it/forum/index.php)
-   Scienza e tecnica (https://www.hwupgrade.it/forum/forumdisplay.php?f=91)
-   -   [Official Thread]Richieste d'aiuto in MATEMATICA: postate qui! (https://www.hwupgrade.it/forum/showthread.php?t=1221191)


misterx 24-11-2009 13:10

ciao nascimentos,
ho usato Derive, forse ho digitato qualche parametro errato:stordita:


domanda sulle derivate
y = n^2 * tg(n^2+n / n^3 + 4n^2 + 1)

che volendo si può semplificare come

y = a * tg(b / c)

mi chiedevo sull'ordine di derivazione: prima a(d) * tg(b/c)(nd) + a(nd) * tg(b/c)(d) e quindi si passa a derivare l'argomento della tangente ?


note:
(d) = derivato
(nd) = non derivato

grazie

nascimentos 24-11-2009 13:26

Quote:

Originariamente inviato da misterx (Messaggio 29813518)
ciao nascimentos,
ho usato Derive, forse ho digitato qualche parametro errato:stordita:


domanda sulle derivate
y = n^2 * tg(n^2+n / n^3 + 4n^2 + 1)

che volendo si può semplificare come

y = a * tg(b / c)

mi chiedevo sull'ordine di derivazione: prima a(d) * tg(b/c)(nd) + a(nd) * tg(b/c)(d) e quindi si passa a derivare l'argomento della tangente ?


note:
(d) = derivato
(nd) = non derivato

grazie

Si: devi fare come hai scritto tu

Ma questo ha a che fare con il limite che ho scritto io?

misterx 24-11-2009 16:41

Quote:

Originariamente inviato da nascimentos (Messaggio 29813806)
Si: devi fare come hai scritto tu

Ma questo ha a che fare con il limite che ho scritto io?


grazie :)

Non ha a che fare con la tua domanda, approfittavo del mio intervento per una domanda

nascimentos 24-11-2009 17:02

Quote:

Originariamente inviato da nascimentos (Messaggio 29810512)
Io :cool:

Forse così vi è più semplice...


Lasciando stare il limite, ciò che è tra le parentesi quadre è possibile riscriverlo in altro modo (se è possibile, eliminando j e quindi la sommatoria)?

misterx 24-11-2009 19:38

ciao,
mi sfugge una qualche proprietà :muro:

perchè x^x = e^(ln(x)^x) ???

kwb 24-11-2009 21:51

Quote:

Originariamente inviato da misterx (Messaggio 29819466)
ciao,
mi sfugge una qualche proprietà :muro:

perchè x^x = e^(ln(x)^x) ???

l'esponenziale e il logaritmo sono 2 funzioni inverse, una annulla l'altra.
e^ln(x) [ vale a dire "esponenziale elevato al logaritmo naturale - funzione inversa dell'esponenziale - di x" ] è come scrivere x
Nel tuo caso x^x . Usare questa proprietà torna utile per poter usufruire poi delle proprietà dei logaritmi ( la tua espressione si può infatti riscrivere e^(x*ln(x))

matt22222 26-11-2009 14:42

Quote:

Originariamente inviato da matt22222 (Messaggio 29807424)
visto che il mio prof non mi ha neanche risposto alla mail che gli ho mandato 2 settimane e la prossima settimana ho l'esame, posto qua un problema. Spero che qualcuno mi aiuti.:) (sorry per gli errori di ortografia, ho scritto al buio :) )



in linea teorica sarei capace di risolverlo. Il problema è che non riesco a porre le condizioni iniziali giuste :muro: :muro:

nessuno?? :cry: :cry:

Jarni 26-11-2009 17:44

Quote:

Originariamente inviato da misterx (Messaggio 29819466)
ciao,
mi sfugge una qualche proprietà :muro:

perchè x^x = e^(ln(x)^x) ???

Casomai x^x=e^ln(x^x).

Che diventa x^x=e^(x*ln(x)).

misterx 26-11-2009 18:43

Quote:

Originariamente inviato da Jarni (Messaggio 29847383)
Casomai x^x=e^ln(x^x).

Che diventa x^x=e^(x*ln(x)).

ciao,
infatti ho notato di aver messo una parantesi di troppo :stordita:

Non ho ancora risolto questo dubbio :fagiano:

Snake156 27-11-2009 10:45

ragazzi spero possiate aiutarmi,
è più un quesito d statistica ma sicuramente voi geni della matematica saprete togliermi questo dubbio:

il coefficiente di correlazione tra x,y è dato dal rapporto tra la cov di x,y e il prodotto delle varianze o delle deviazioni standard(scarto)?

nascimentos 27-11-2009 12:31

Quote:

Originariamente inviato da Snake156 (Messaggio 29854630)
ragazzi spero possiate aiutarmi,
è più un quesito d statistica ma sicuramente voi geni della matematica saprete togliermi questo dubbio:

il coefficiente di correlazione tra x,y è dato dal rapporto tra la cov di x,y e il prodotto delle varianze o delle deviazioni standard(scarto)?

deviazioni standard(scarto)

Snake156 27-11-2009 22:58

Quote:

Originariamente inviato da nascimentos (Messaggio 29856317)
deviazioni standard(scarto)

ok,grazie mille

misterx 28-11-2009 16:30

edit

kwb 29-11-2009 12:05

Devo risolvere un sistema di equazioni parametriche, ma non so come fare, questo è il testo
Determinare a,b appartenenti ai numeri reali tale che la funzione

sia derivabile in x = 0


Come si procede?

85francy85 29-11-2009 13:58

devi imporre la continuità in 0 cioè f(0-)=f(0+) e che la derivata dx e sx in 0 siano uguali f'(0-)=f'(0+)

in questo caso se non ho sbagliato dalla prima condizione deriva che a=0 e dalla seconda b=-1

kwb 29-11-2009 15:29

Quote:

Originariamente inviato da 85francy85 (Messaggio 29879880)
devi imporre la continuità in 0 cioè f(0-)=f(0+) e che la derivata dx e sx in 0 siano uguali f'(0-)=f'(0+)

in questo caso se non ho sbagliato dalla prima condizione deriva che a=0 e dalla seconda b=-1

Si, ho chiesto maggiori info al mio prof e si fa così. Grazie! :)

guylmaster 29-11-2009 15:46

Salve a tutti,
ho qualche problemino con il seguente esercizio:
http://uploaded.to/file/741syg

Si tratta di un sistema di congruenze lineari. Tramite il il "Teorema cinese del resto" non ho problemi a risolverlo, ma per sostituzioni invece mi incarto sempre.

Questo esercizio ad esempio un mio amico mi ha fatto vedere come l'ha risolto lui, partendo prima dall'ultima congruenza lineare, ovvero affrontandolo al contrario. E difatti il discorso fila.

Affrontandolo dalla parte superiore invece mi blocco. L'esercizio come ve l'ho scritto li è solo "una delle tante prove".

Magari c'è qualche anima pia che capisce dove sbaglio e mi da qualche dritta, o mi date una mano consiglaindomi qualche sito che lo spiega in maniera completa.

Vi dico già che prima di disturbarvi su questo thread ci sto impazzendo da 2 giorni ed ho già chiesto a due miei colleghi universitari: Uno non ci riesce proprio, l'altro ci è riuscito con un esercizio e non con l'altro segno in equivocabile che nemmeno a lui è tanta chiaro.

Il punto è che non ci è stato spiegato il ragionamento da applicare, ci è stato solo detto:

"Se sono tutte congruenze compatibili, allora dovete risolvere la prima ed inserire il risultato della prima congruenza al posto della seconda e così via", e poi c'è stato fatto vedere un esercizio. Ma tra il dire è il fare c'è di mezzo quell'obrbrio che vi ho linkato

e-commerce84 29-11-2009 18:00

[URGENTE] Esercizio analisi numerica
 
Ciao,
c'è qualcuno che mi sà aiutare...è un po' urgente...dovrei sapere se la strategia di risoluzione di questo esercizio è corretta (ho un dubbio sull'ultimo punto).

L'esecizio riguarda il metodo di Jacobi per risolvere in modo iterativo un sistema lineare Ax = b

Mi si dà la seguente matrice dei coefficienti:

A = {[8,2,1]; [1,8,2]; [1,1,8]}

Ho raggruppato le righe tra []

Il vettore b dei termini noti è b =(11,11,10) (trasposto ovviamente)

Il vettore X_0 iniziale è: x_0 = (0,0,0) (sempre trasposto)

L'esercizio chiede:

1) Dire se posso utilizzare il metodo di Jacobi motivando la risposta.

Si posso usare il metodo di Jacobi perchè si tratta di una matrice strettamente a diagonale dominante che è condizione sufficiente alla convergenza sia del metodo di Jacobi che di Gauss-Saidel (forse anche di tutti i metodi iterativi in generale, o sbaglio?)

2) Calcolare le prime due iterate:

Vabbè non mi metto a riportare i conti sul forum...dico solo che ho costruito la MATRICE DI ITERAZIONE DEL METODO DI JACOBI così:



dove D^(-1) è la matrice inversa degli elementi sulla diagonale di A che è molto facile da calcolare in quanto D*D^(-1) = I

Una volta ricavata la matrice di iterazione del metodo di Jacobi uso la formula iterativva:



che praticamente calcola l'elemento successivo in base al precedente...
quindi inizio mettendo il vettore X_0 dato e calcolo x_1 e con questo calcolo X_2 e trovo una soluzione approssimata della soluzione reale

3) Calcolare l'ERRORE GENERATO CON LE 2 ITERAZIONI IN NORMA INFINITO:

E questo è il punto che mi crea qualche dubbio...io l'ho pensata così:

Viene definito l'ERRORE ASSOLUTO COMMESSO AL PASSO k così:


Praticamente la differenza tra la soluzione calcolata dal metodo e la soluzione effettiva che dovrei conoscere

Poi è definito il VETTORE RESIDUO alla k-esima iterazione così:


E tramite una dimostazioncina sò che l'errore commesso alla k-esima iterazione è:

Da quì passo ad usare le proprietà delle norme (che sono submoltiplicative):
http://operaez.net/mimetex/||e^{(k)}...dot ||r^{(k)}|

Così ho ottenuto una maggiorazione dell'errore al passo k (nel mio caso al passo 2), visto che mi si chiede l'errore in NORMA INFINITO del vettore errore considero la componente maggiore.

Ci può stare come ragionamento? la cosa che non sò se è corretta è che per usare questo sistema dovrei invertire la matrice A, e se A è molto grande? la vedo incasinata come situazione...però leggendo appunti e libro non mi pare di trovare altri metodi per rispondere a questa domanda

Per favore è importante...l'esame si avvicina

Grazie a tutti

Ziosilvio 29-11-2009 19:32

Quote:

Originariamente inviato da kwb (Messaggio 29878333)
Devo risolvere un sistema di equazioni parametriche, ma non so come fare, questo è il testo
Determinare a,b appartenenti ai numeri reali tale che la funzione

sia derivabile in x = 0


Come si procede?

In realtà ti basta derivare la funzione a tratti, e impostare a e b in modo che la derivata sinistra sia uguale a quella destra.
Fai infatti presto a renderti conto che, se la funzione è derivabile da sinistra e da destra in un punto e le derivate sinistra e destra in quel punto coincidono, allora la funzione è derivabile nel punto in questione, e il valore della derivata è anche il valore comune delle derivate sinistra e destra. Ma una funzione derivabile in un punto è ivi anche continua.
EDIT: invece ci vuole anche la continuità, perché il controllo sulle derivate non si accorge dei salti. Chiedo scusa.

85francy85 29-11-2009 20:10

Quote:

Originariamente inviato da Ziosilvio (Messaggio 29884235)
In realtà ti basta derivare la funzione a tratti, e impostare a e b in modo che la derivata sinistra sia uguale a quella destra.
Fai infatti presto a renderti conto che, se la funzione è derivabile da sinistra e da destra in un punto e le derivate sinistra e destra in quel punto coincidono, allora la funzione è derivabile nel punto in questione, e il valore della derivata è anche il valore comune delle derivate sinistra e destra. Ma una funzione derivabile in un punto è ivi anche continua.

Non ho capito perchè non si debba richiedere anche la continuità, se si prende la funzione x-a per x<0 e x+a per x>=0 è continua e derivabile in 0 solo se a=0 cioè imponendo anche la condizione di continuità ... o no? :mbe:


Tutti gli orari sono GMT +1. Ora sono le: 15:31.

Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2022, Jelsoft Enterprises Ltd.
Hardware Upgrade S.r.l.