Hardware Upgrade Forum

Hardware Upgrade Forum (https://www.hwupgrade.it/forum/index.php)
-   Scienza e tecnica (https://www.hwupgrade.it/forum/forumdisplay.php?f=91)
-   -   [Official Thread]Richieste d'aiuto in MATEMATICA: postate qui! (https://www.hwupgrade.it/forum/showthread.php?t=1221191)


T3d 08-01-2009 17:00

Quote:

Originariamente inviato da 85francy85 (Messaggio 25752520)
e perchè? :mbe:

2*y(3) vale -4 :fagiano:

lo so... ma che senso ha chiederlo? un trabocchetto?

di solito, per esperienza mia eh, quando in un esercizio trovi queste incongruenze è perchè è sbagliato il testo di partenza.

85francy85 08-01-2009 17:10

Quote:

Originariamente inviato da T3d (Messaggio 25752695)
lo so... ma che senso ha chiederlo? un trabocchetto?

di solito, per esperienza mia eh, quando in un esercizio trovi queste incongruenze è perchè è sbagliato il testo di partenza.

mica tutti gli esercizi sono della giusta facilità e meccanicità, ci sarà pure quello piu complesso e quello piu semplice come in questo caso che una volta risolto ti dici " mi sembra troppo bello per essere vero" :D .

Ad ogni modo per me è un esercizio "interessante". Lo studente dovrebbe notare che nelle eq. differenziali è importante anche la soluzione particolare e in questo caso è l'unica che da un contributo alla soluzione con quelle condizioni iniziali :D

L'altra possibilità è che abbiano effettivamente sbagliato i dati dell'esercizio ma poco importa:D

T3d 08-01-2009 17:18

appunto perchè quel "2*y(3)" non ha niente di complesso mi porta a credere che non sia stato messo lì apposta...

poi hai ragione, poco importa... era solo per parlare un po' :D

theiden 08-01-2009 22:26

salve, avrei un problemino con quest'identità goniometrica

sapendo che: pi=a+b+g pi=pi greco
dimostra questa identità
sen(a)+sen(b)+sen(g)=4cos(a/2)cos(b/2)cos(g/2)

dopo una miriade si passaggi (non sono sicuro al 100% siano giusti) sono arrivato a:

sen(a)+sen(b)+sen(g)=0

e ora???:mc:

bella rogna!:muro:

3vi 08-01-2009 22:39

edit: risolto da me :D

misterx 09-01-2009 22:56

cercavo un esempio chiaro sulla "statistica sufficiente" :fagiano:

Una statistica sufficiente è una funzione che sintetizza l'informazione contenuta nel campione: ma che significa ?

:)

Banus 10-01-2009 13:57

Quote:

Originariamente inviato da theiden (Messaggio 25758555)
sapendo che: pi=a+b+g pi=pi greco
dimostra questa identità
sen(a)+sen(b)+sen(g)=4cos(a/2)cos(b/2)cos(g/2)

Prova a usare le formule di prostaferesi sui primi due sen:



Dove nel secondo termine ho sfruttato la relazione a+b = pi - g e il fatto che sin(g)=sin(pi-g). Sempre nel secondo termine, puoi riscrivere a+b = 2*(a+b)/2 e applicare la formula per sin(2x).



Nel secondo passaggio ho raccolto il seno, e ho sfruttato le relazioni (a+b)/2 = pi/2 - g/2 e sin(pi/2 - x) = cos(x). Ora è sufficiente svolgere i coseni nella parentesi per ottenere il risultato.

Quote:

Originariamente inviato da theiden (Messaggio 25758555)
sen(a)+sen(b)+sen(g)=0

Probabilmente c'è un errore. Prova con a=b=g=pi/3 :p

theiden 10-01-2009 14:22

in effetti ho rifatto i calcoli e sen(a)+sen(b)+sen(g)=0 è sbagliato, non ho provato con il tuo metodo però sono riuscito a risolverlo ponendo a=pi-(b+g) e quindi sostituendo tutte le a all'inizio gonfia, ma poi si semplifica tutto...
e viene 0=0 identità riuscita XD

Sirbako 10-01-2009 15:20

qualcuno di voi ha esercizi svolti (in internet) sul teorema di rice-shapiro e la sua applicazione?

Snake156 11-01-2009 10:50

scusate la domanda molto idiota per la stragrande maggioranza di voi.

quando ho una frazione del tipo

radice quadrate di c / radice quadrata di c2

per eliminare le radici e quindi semplificare i successivi calcoli, posso elevare a potenza entrambe?o un operazione matematicamente errata?

Guts 11-01-2009 11:58

se la frazione fa parte di un'equazione, cioè frazione=qualcos'altro, allora puoi elevare entrambi i membri, ma prendere la frazione a se stante ed elevarla al quadrato nn ha senso.

misterx 11-01-2009 16:14

ho ancora dubbi sulla variabile aleatoria!

Si dice che la media campionaria è una variabile aleatoria e come tale ha la sua media e varianzae altro.

Si legge anche che la media campionaria è difinita come .

Mi chiedevo: se ogni Xi rappresenta un evento, esempio l'altezza delle persone:
X1(carlo)=1.75
X2(beatrice)=1.70
X3(giorgio)=1.80

usando la formula che ho indicato, otterrei la media di queste 3 altezze; ma siccome si dice che la media campionaria è una v.a. per determinare la sua distribuzione avrei necessitò di più eventi separati ?

85francy85 11-01-2009 16:29

Quote:

Originariamente inviato da misterx (Messaggio 25796547)
ho ancora dubbi sulla variabile aleatoria!

Si dice che la media campionaria è una variabile aleatoria e come tale ha la sua media e varianzae altro.

Si legge anche che la media campionaria è difinita come .

Mi chiedevo: se ogni Xi rappresenta un evento, esempio l'altezza delle persone:
X1(carlo)=1.75
X2(beatrice)=1.70
X3(giorgio)=1.80

usando la formula che ho indicato, otterrei la media di queste 3 altezze; ma siccome si dice che la media campionaria è una v.a. per determinare la sua distribuzione avrei necessitò di più eventi separati ?

per separati cosa intendi? :fagiano:

ad ogni modo per valutare la distribuzione ti servono più realizzazioni differenti e possibilmente il piu possibile. Una volta effettuate tutte le realizzazioni le plotti come grafico a diospersione XY o come grafico a barre assumendo per esempio che l'altezza di carlo non sia 1,75 ma compresa tra 1,725 e 1,775 quella di beatrice tra 1,675 e 1,725 ( insomma associando una determinata realizzazione ad un intervallo non un numero esatto).
Una volta disegnato ci sono piu metodi per stimare i vari dati es: se supponi che la distribuzione sia exp del tipo

F(x)=1-e^-at allora elaborando un attimo hai che
ln(1/(1-F(x)))=at che è una retta!!
plotti le tue realizzazioni e delle tue realizzazioni valuti la retta interpolante ad esempio con il metodo dei minimi quadrati. Una volta fatto questo se vedi che i tuoi punti fittano bene la retta hai una possibile distribuzione che ti descrive i tuoi dati che è quella exp con parametri a= pendenza della retta interpolante.

Se non ti fitta bene i dati provi con altre distribuzioni: T-student, Weibull, lognormale etc etc naturalmente adattando opportunamente gli assi per avere una retta.

Snake156 11-01-2009 17:08

Quote:

Originariamente inviato da Guts (Messaggio 25792495)
se la frazione fa parte di un'equazione, cioè frazione=qualcos'altro, allora puoi elevare entrambi i membri, ma prendere la frazione a se stante ed elevarla al quadrato nn ha senso.

quindi se ho

radice di c / radice di c2 = p1/p2 devo elevare tutto al quadrato? sia a dx che sx?

oppure posso elevare solo radice di c / radice di c2?

misterx 11-01-2009 19:55

Quote:

Originariamente inviato da 85francy85 (Messaggio 25796740)
per separati cosa intendi? :fagiano:

grazie per la risposta :)

intendevo che prendo un gruppo di persone a milano e ne faccio la media, un gruppo a roma e ne faccio la media e poi faccio la distribuzione della media campionaria con tutte queste medie.

Quindi avrei che: con i vari m1, m2,..,mn (medie dei campioni) calcolo media e varianza campionaria e poi traccio la gaussiana.

Quello che ho notato generando 1000 campioni casuali e poi facendone la media di tutti e 1000, ottengo quella che viene definita la media della popolazione.
Se di quei 1000 campioni ne estraggo un certo numero di gruppi e poi ne faccio la media, ottengo per ogni gruppo medie diverse che sono dovute al caso, ma poi se le medio tutte riottengo la media della popolazione.

Questo fatto mi ha suggerito che la formula che ho citato in precedenza per ogni Xì, sia che identifichi una media di un campione che un singolo valore ciò che si ottiene è la stessa cosa, mi spiego: ero convinto che per fare la distribuzione campionaria che è una variabule aleatoria, si dovesse necessariamente creare tante medie e poi mediarle successivamente ma, dopo l'esperimento che ho condotto il risultato è il medesimo.
La morale allora è che se si da retta a quanto recita il teorema del limite centrale, per un numero n abbastanza grande di dati la distribuzione campionaria tende ad una distribuzione normale.

Scusa ma è due giorni che litigo col significato di variabile aleatoria. So che è una funzione che associa un elemento dello spazio campionario ad un numero sulla retta reale, ma che mi depista nel momento in cui si dicono cose del tipo: dato un campione (X1,X2,...,Xn)
In questo caso non si capisce se nella definizione per ogni v.a. deve competere ad esempio una sola altezza di una persona oppure se ogni Xn rappresenta una distribuzione con la sua media e la varianza.

Guardando la formula citata che è poi uno stimatore, mi viene da dire che ogni Xn è una distribuzione che può essere fatto da 1 a n elementi ciascuna. Facendone la sommatoria poi, il risultato non cambia se si considerano le varie Xn costituite da 1 o più campioni.

La morale è che grazie al limite centrale la media campionaria può essere pensata come fatta da tante altezze delle quali farne la media oppure da tante medie di cui farne la media ed il risultato è il medesimo.

Scusa ma spero di essermi espresso in modo chiaro, anche se ho più di qualche dubbio :stordita:

85francy85 11-01-2009 20:04

solo una domanda. Cosa intendi per campione? un GRUPPO/lotto di estrazioni o una Singola estrazione per intenderci?

misterx 11-01-2009 20:35

Quote:

Originariamente inviato da 85francy85 (Messaggio 25800217)
solo una domanda. Cosa intendi per campione? un GRUPPO/lotto di estrazioni o una Singola estrazione per intenderci?

l'ho chiesto l'altro giorno alla docente e mi ha detto che quando leggo: dato un campione (X1,X2,...,Xn) si intende un insieme di variabili aleatorie, se poi ad ognuna corrispondono più valori questo non lo so.

Io ho sempre pensato che ad ognuna corrispondesse ad esempio una gaussiana.

Messa in questo modo quando calcolo il valore atteso allora è una somma di v.a. e quindi una somma di funzioni


Per ogni variabile aleatoria di qualunque distribuzione sono definiti due parametri:

la media mu che è la media dei valori che la variabile aleatoria può assumere:

la varianza sigma^2 che indica la concentrazione intorno alla media della variabile aleatoria, la sua radice quadrata sigma è detta deviazione standard .

Snake156 12-01-2009 09:14

ragazzi scusate ma ho un'altra domanda scema:

3 ln(x) + ln(x2)

in base ad una proprietà dei logaritmi equivale a x^3 + x2 ?

85francy85 12-01-2009 09:26

Quote:

Originariamente inviato da Snake156 (Messaggio 25804850)
ragazzi scusate ma ho un'altra domanda scema:

3 ln(x) + ln(x2)

in base ad una proprietà dei logaritmi equivale a x^3 + x2 ?

no

3 ln(x) + ln(x2) = ln(x^3*X2)

se con X2 intendevi dire x^2 allora

3 ln(x) + ln(x^2) = ln(x^3*x^2)=ln(x^5)=5*ln(x)

85francy85 12-01-2009 09:43

Quote:

Originariamente inviato da misterx (Messaggio 25800690)
l'ho chiesto l'altro giorno alla docente e mi ha detto che quando leggo: dato un campione (X1,X2,...,Xn) si intende un insieme di variabili aleatorie, se poi ad ognuna corrispondono più valori questo non lo so.

Io ho sempre pensato che ad ognuna corrispondesse ad esempio una gaussiana.

Messa in questo modo quando calcolo il valore atteso allora è una somma di v.a. e quindi una somma di funzioni


Per ogni variabile aleatoria di qualunque distribuzione sono definiti due parametri:

la media mu che è la media dei valori che la variabile aleatoria può assumere:

la varianza sigma^2 che indica la concentrazione intorno alla media della variabile aleatoria, la sua radice quadrata sigma è detta deviazione standard .

Le cose vanno distinte per bene:

se X1,...Xn sono REALIZZAZIONI di una variabile aleatoria ( quindi numeri) allora puoi stimare la media e la varianza della stessa e ipotizzare una certa distribuzione e questo è quello che ho scirtto prima

se X1, .... Xn sono Variabili aleatorie quindi funzioni con una certa distribuzione TUTTE con la stessa distribuzione comune F(x) e media µ
è una VARIABILE ALEATORIA detta media campionaria o media campione.
come tale si puoo calcolare il valor medio come hai riportato

dove µ è appunto per definizione la media della F(x) comune a tutte le Xi, e anche la varianza dell amedia campionaria che è pari alla varianza della F(x) diviso n.

Snake156 12-01-2009 10:28

Quote:

Originariamente inviato da 85francy85 (Messaggio 25804976)
no

3 ln(x) + ln(x2) = ln(x^3*X2)

se con X2 intendevi dire x^2 allora

3 ln(x) + ln(x^2) = ln(x^3*x^2)=ln(x^5)=5*ln(x)

ah ok.

ma 3 ln(x) + ln(x2) in nessun modo può essere trasformato in x^3 + x2?

PS

con x2 intendo X due (bene 2, mentre x bene 1)

misterx 12-01-2009 11:02

Quote:

Originariamente inviato da 85francy85 (Messaggio 25805141)
Le cose vanno distinte per bene:

se X1,...Xn sono REALIZZAZIONI di una variabile aleatoria ( quindi numeri) allora puoi stimare la media e la varianza della stessa e ipotizzare una certa distribuzione e questo è quello che ho scirtto prima

se X1, .... Xn sono Variabili aleatorie quindi funzioni con una certa distribuzione TUTTE con la stessa distribuzione comune F(x) e media µ
è una VARIABILE ALEATORIA detta media campionaria o media campione.
come tale si puoo calcolare il valor medio come hai riportato

dove µ è appunto per definizione la media della F(x) comune a tutte le Xi, e anche la varianza dell amedia campionaria che è pari alla varianza della F(x) diviso n.

ciao

le uniche certezze che ho stanno nelle definizioni. Nel mio corso si fa distinzione tra X grande e x piccola dove con X grande ma vale anche per tutte le altre lettere si definiscono le variabili aleatorie e quindi sono funzioni, con lettere piccole invece le varie realizzazioni che sono numeri.
Essendo una v.a. dotata di media e varianza e quindi una funzione, la media campionaria è ottenuta sommando funzioni esempio gaussiane e non singoli valori.

:muro:

85francy85 12-01-2009 11:18

Quote:

Originariamente inviato da misterx (Messaggio 25806097)
ciao

le uniche certezze che ho stanno nelle definizioni. Nel mio corso si fa distinzione tra X grande e x piccola dove con X grande ma vale anche per tutte le altre lettere si definiscono le variabili aleatorie e quindi sono funzioni, con lettere piccole invece le varie realizzazioni che sono numeri.
Essendo una v.a. dotata di media e varianza e quindi una funzione, la media campionaria è ottenuta sommando funzioni esempio gaussiane e non singoli valori.

:muro:

appunto, è quello che volevo farti notare siccome parlavi di
X1(carlo)=1.75
X2(beatrice)=1.70
X3(giorgio)=1.80
:D .

Inoltre c'e una altro piccolo problema. Si chiama media campionaria anche nel seguente caso. Metti di voler stimare la media della popolazione italiana, tu non lo fai su tutte le persone ma prendi un campione rappresentativo di 1000 persone ad esempio e calcoli la media delle altezze, se hai scelto in modo opportuno il campione allora la media sarà rappresentativa della media di tutta la popolazione italiana. Questa media si chiama anc'essa media campionaria :fagiano:

85francy85 12-01-2009 11:19

Quote:

Originariamente inviato da Snake156 (Messaggio 25805652)
con x2 intendo X due (bene 2, mentre x bene 1)

:confused: :confused: :confused: non ho capito

misterx 12-01-2009 12:01

Quote:

Originariamente inviato da 85francy85 (Messaggio 25806298)
appunto, è quello che volevo farti notare siccome parlavi di
X1(carlo)=1.75
X2(beatrice)=1.70
X3(giorgio)=1.80
:D .

giusto, e questo potrebbe essere il caso di una distibuzione bernoulliana un pò alla cavolo nel senso che, mi chiedo se tutti quelli che si chiamano carlo scrivo 1.75, se beatrice 1.70 e così via; questo esempio un pò forzato per continuare ad usare le stesse v.a.
Se ora calcolo la media e la varianza di ogni v.a. ottengo dei valori privi di significato, ma se ne uso tanti e poi ne faccio la media, posso costruire la media campionaria e quindi la sua distribuzione.


Quote:

Originariamente inviato da 85francy85 (Messaggio 25806298)
Inoltre c'e una altro piccolo problema. Si chiama media campionaria anche nel seguente caso. Metti di voler stimare la media della popolazione italiana, tu non lo fai su tutte le persone ma prendi un campione rappresentativo di 1000 persone ad esempio e calcoli la media delle altezze, se hai scelto in modo opportuno il campione allora la media sarà rappresentativa della media di tutta la popolazione italiana. Questa media si chiama anc'essa media campionaria :fagiano:

il mio problema è stato quello di fossilizzarmi solo sulla gaussiana la quale per poterla calcolare e disegnare, la sua variabile aleatoria necessita di molte realizzazioni:x1,x2,xn

Ora quasi capisco cosa intende il teorema del limite centrale che all'aumentare dei campioni qualsiasi distribuzione tende ad una normale. Nel caso di beroulliane avremo funzioni che sono formate da un solo punto per v.a. mentre nel caso di gaussiane più punti(realizzazioni) per v.a.

Spero sia così :muro:

grazie francy

Snake156 12-01-2009 16:55

Quote:

Originariamente inviato da 85francy85 (Messaggio 25806314)
:confused: :confused: :confused: non ho capito


sono problemi microeconomici quindi x1 è il bene 1 e x2 è il bene 2

85francy85 12-01-2009 19:14

Quote:

Originariamente inviato da Snake156 (Messaggio 25812277)
sono problemi microeconomici quindi x1 è il bene 1 e x2 è il bene 2

a ok, ma di lettere e simboli per indicare variabili diverse ne esistono a iosa x y z q ß ® ™ :D i prof dovrebbero imparare ad usarli non sempre X e Y con usi rari di t a b e ∂ :D

85francy85 12-01-2009 19:16

Quote:

Originariamente inviato da Snake156 (Messaggio 25805652)
ah ok.

ma 3 ln(x) + ln(x2) in nessun modo può essere trasformato in x^3 + x2?

dimenticavo, no, naturalmente non c'e nessun modo ( o meglio semplificazione e/o elaborazione non modo :D ) che si puo' fare per trasformarlo cosi. :stordita:

Snake156 12-01-2009 21:14

Quote:

Originariamente inviato da 85francy85 (Messaggio 25814693)
a ok, ma di lettere e simboli per indicare variabili diverse ne esistono a iosa x y z q ß ® ™ :D i prof dovrebbero imparare ad usarli non sempre X e Y con usi rari di t a b e ∂ :D

pienamente d'accordo.
tra matematica e microeconomia ci ho un casino in testa che non hai proprio idea

Quote:

Originariamente inviato da 85francy85 (Messaggio 25814726)
dimenticavo, no, naturalmente non c'e nessun modo ( o meglio semplificazione e/o elaborazione non modo :D ) che si puo' fare per trasformarlo cosi. :stordita:

ok.grazie mille

misterx 12-01-2009 21:57

secondo voi

se lancio 50 volte una moneta e scrivo il numero di volte che esce testa e lo chiamo x1=35
Ripeto l'esperimento e lo chiamo x2=10 e vado avanti così per 10 volte.
Prendo quindi tali variabili e ne faccio la media.
media campionaria=(x1+x2+...+x10)/10

Ora classifico le prove per frequenza usando degli intervalli e quindi ne traccio un istogramma: perchè non assomiglia per nulla ad una distribuzione gaussiana ?

Ho provato con 2000 campioni e nemmeno in questo caso ottengo una gaussiana approssimata :stordita:

85francy85 12-01-2009 22:06

Quote:

Originariamente inviato da misterx (Messaggio 25817651)
secondo voi

se lancio 50 volte una moneta e scrivo il numero di volte che esce testa e lo chiamo x1=35
Ripeto l'esperimento e lo chiamo x2=10 e vado avanti così per 10 volte.
Prendo quindi tali variabili e ne faccio la media.
media campionaria=(x1+x2+...+x10)/10

Ora classifico le prove per frequenza usando degli intervalli e quindi ne traccio un istogramma: perchè non assomiglia per nulla ad una distribuzione gaussiana ?

Ho provato con 2000 campioni e nemmeno in questo caso ottengo una gaussiana approssimata :stordita:

metti qui l'istogramma che viene che commentiamo:)
Il problema è che la teoria dice per n-> inf quindi è critico dire " ok ne ho gia fatti abbastanza" :D

inoltre: con cosa hai generato i numeri casuali? quello di excel e dei computer sono numeri PSEUDOcasuali non casuali e potrebbero falsarti il tutto

misterx 12-01-2009 22:35

Quote:

Originariamente inviato da 85francy85 (Messaggio 25817805)
metti qui l'istogramma che viene che commentiamo:)
Il problema è che la teoria dice per n-> inf quindi è critico dire " ok ne ho gia fatti abbastanza" :D

inoltre: con cosa hai generato i numeri casuali? quello di excel e dei computer sono numeri PSEUDOcasuali non casuali e potrebbero falsarti il tutto

eccolo http://img504.imageshack.us/img504/4656/imgfq9.gif

ho usato un programma di due righe in VBA con la funzione random()

il risultato è pessimo :(

p.s.
ignora i nomi delle colonne che non fanno fede

misterx 13-01-2009 18:49

mi sa che hai ragione francy, il randomize di excel non va bene

p.s.
c'era un errore di valutazione, ora funziona perfettamente :)

http://img181.imageshack.us/img181/8939/imgbb6.gif

chi la dura la vince 1000 lanci di una moneta

The_ouroboros 15-01-2009 12:04



Non so come risolvere questi sistemi per ottenere gli autospazi :cry: :cry:

Sirbako 15-01-2009 17:11

qualcuno se ne intende di lambda calcolo, beta riduzioni e forma normali?
ho queste slide:
http://dit.unitn.it/~zunino/teaching/computability.pdf
pagina es n° 59 di pagina 17 (21 del pdf)
Codice:

KIK
KKI
K(K(KI))
SII
SII(SII)
KI(Omega)
(Lz. (Lx. xxz)(Lx. xxz))

da quello che ho fatto io, per me sono:
Codice:

Sì: I
Sì: K
? come si gestiscono le parentesi?
? secondo me nn c sono passi da fare, quindi sì
Sì: S(SII)(I(SII) -> S(SII)(SII) nn penso si possa proseguire.
Sì: I
? nn so le parentesi

qualcuno sa dirmi le soluzioni?

come si può capire nn mi è chiaro come si gestiscono le parentesi, es:

K (KI) I: cosa diventa? KI?
se avessi K (IK) I sarebbe prima da svolgere la parentesi quindi K I I e poi quindi I?

La forma normale si raggiunge quando nn è più possibile ridurre es I, ma se ho
KI è in forma normale (serve un altro valore per poter ridurre ancora)?

jestermask 15-01-2009 18:37

Tanto per rimanere su algebra lineare, chi mi dice in parole povere, proprio terra terra, come si calcola la molteplicità algebrica di un autovalore?

Senza formule o dimostrazioni...solamente una spiegazione rapida:stordita:

E' quante volte il valore (lamda) si ripete?

Ad esempio perchè se su lamba= 4 l'autovalore è 2 (OK)

e su un altro esercizio mi ritrovo lambda1 = 0 e lamba2 = 1, con lamba1 di molteplicità 1 (OK) e lamba2 ha moletplicità 2???

Mat-ita 15-01-2009 21:09

HELP!! STUDIO FUNZIONE!!! :D

Y=logx /(1-x)

D: x E (0;1)U(1;+INFINITO)

ZERI: NON CE NE SONO!!! LOG X = 0 per x=1... ma 1 non appartiene al dominio!

segno della funzione... sempre negativo....
log x>0 x>1
1-x >0 x<1

.... quindi tutto negativo

ASINTOTI:
lim x->1- mi viene -1 (hopital)
lim x->1+ mi viene -1 (hopital)

lim x-> + infinito mi viene 0

as obliquio non c'e... perche k mi viene = a 0

la derivata prima mi viene un bordello : S potreste scrivermi derivata prima lo studio della monotonia (max min) e la derivata seconda?? (studio flessi)


grazie.. a me sono venute porcate.. c'e :s proprio non so manco cazzo ho scritto!!!:help: :help: :doh: :D

85francy85 15-01-2009 21:41

la derivata prima è

[1/x*(1-x)+logx]/(1-x)^2 = [(1-x)+x*logx]/[x*(1-x)^2]

non mi sembra tanto complicata :stordita:

Mat-ita 15-01-2009 22:10

Quote:

Originariamente inviato da 85francy85 (Messaggio 25865036)
la derivata prima è

[1/x*(1-x)+logx]/(1-x)^2 = [(1-x)+x*logx]/[x*(1-x)^2]

non mi sembra tanto complicata :stordita:


ecco si vabbene:O ! ma il mio problema è che non riesco a porlo = 0
c'e nel senso : s non so come cappero dire per che x la derivata prima e uguale a 0! mi viene la derivata :


[(1-x)/x]+log x/(1-x)^2

ora pongo il numeratore = a 0 ma non so come risolvere [(1-x)/x]+logx=0 e mo che faccio?? XD

MaxArt 15-01-2009 23:09

Quote:

Originariamente inviato da Mat-ita (Messaggio 25865415)
ora pongo il numeratore = a 0 ma non so come risolvere [(1-x)/x]+logx=0 e mo che faccio?? XD

Nulla: non lo puoi risolvere in modo esplicito.
O sviluppi il logaritmo in serie di Taylor o fai delle considerazioni sugli intervalli dove puoi trovare le soluzioni.


Tutti gli orari sono GMT +1. Ora sono le: 15:59.

Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2024, Jelsoft Enterprises Ltd.
Hardware Upgrade S.r.l.