![]() |
Quote:
E cmq sono partito da un integrale definito e, non avendo mai fatto gli indefiniti, volevo vedere come muovermi :fagiano: :fagiano: |
Quote:
ho una casio fx-5800p... magari spiegami un po' in due parole come faresti, mi sembra un po' da scrocconi fartelo fare a te, a limite lo provo a fare e se ho problemi posto qui per eventuali soluzioni :D |
toh, ci sta anche qua:
ho passato lo scritto di mate aaaaaaaaaaaaaaaaaaaa :winner: :winner: :winner: |
raga..una domanda x voi luminari della mate :)
allora... sin(arcsinx)=x e fin qui ci siamo :D :cool: ma... cos(arcsinx)=???? cè un modo veloce x trovarlo?? senza calcolatrice ovviamente :D grazie a chiunque risponda.. |
Quote:
|
Ragazzi, mi aiutate con l'algebra binaria?
In pratica il libro dice che la somma, in matematica binaria, è l'operazione di "Or esclusivo" o Xor, che ha la seguente tabella di verità: 1 XOR 0 = 1 0 XOR 1 = 1 1 XOR 1 = 0 0 XOR 0 = 0 vorrei capire innanzitutto perchè in algebra binaria la somma è definita come l'OR ESCLUSIVO (il semplice OR allora quando si usa? tutte le operazioni di somma tra numeri espressi in forma binaria, che tipicamente si spiegano nel primo esame di Informatica nelle facoltà scientifiche, usavano l'OR) Scusate, ma ho una gran confusione in mente, complice il fatto di non aver mai avuto a disposizione una trattazione esauriente in materia, che a mio avviso dovrebbe partire dalla descrizione di un sistema di numerazione... Altra cosa: se lo XOR corrisponde alla "somma in algebra binaria", allora perchè la differenza (in XOR) produce lo stesso risultato della somma? Insomma, sul libro è scritto: a + b + c = 0 --> c = a + b ("+" è lo XOR ) c'è un modo (una qualche proprietà) per dimostrare questa affermazione? Grazie mille!! |
Quote:
Le oprezioni di NOT,OR e derivate sono definite su simboli logici. Se {0,1} sono simboli logici hanno la stessa semantica dei valori {Vero,Falso}, {True ,False}, {V,F} .... su valori logici tu applichi operatori logici, lo XOR è uno di questi. Quando invece effettui una operazione aritmetica vedi gli elementi dell'insieme {0,1} come cifre di una numerazione binaria e l'operatore "+" è definito per esempio sull'insieme dei numeri naturali, che tu puoi esprimere tranquillamente in base 2 anzichè in base 10. esempio: interpretiamo i simboli 0 e 1 come cifre della numerazione binaria 1+1=10 la somma si effettua in maniera simile alla somma in base 10: 01+ 01= ___ 1 0 si applica il riporto,quindi, mettendo in colonna, sotto i due 1 metti zero, in maniera analoga a come accade per lo XOR (1 XOR 1 = 0). formalmente però la somma aritmetica (o anche algebrica se lavori du Z) e lo XOR sono operazioni totalmente diverse. La prima è una operazione definita su un insieme di numeri, la seconda è definita su un insieme di valori logici. La semantica è totalmente diversa anche se i simboli sono gli stessi. |
Quote:
grazie pietro :mano: però mi resta un dubbio: tu dici che la somma di 1 + 1 ("somma con riporto" )fa 10, e questo è per me ineccepibile: così come in un sistema di numerazione in base dieci (che usa le cifre da 0 a 9 per rappresentare dei valori numerici), il numero successivo al 9 è il numero 10 - che è espresso dalla giustapposizione della cifra 1 e della cifra 0 - così in un sistema di numerazione binario il numero successivo all'1 è il numero 10, quello ancora successivo è il numero 11, poi 100, ecc... Non capisco allora perchè, nella codifica polinomiale (Codici a Correzione d'errore CRC), il Tanenbaum dica di adoperare l'aritmetica dei polinomi, in cui l'addizione e la sottrazione sono identiche all'Or esclusivo e la divisione va eseguita "modulo 2". Ora, sono abbastanza convinto del fatto che l'associazione di un polinomio ad una stringa di bit, utile per presentare in modo semplice il concetto, sia però in qualche modo tutt'altro che nesessaria, dato che è possibile ottenre i medesimi risultati (e più semplicemente), ragionando direttamente in aritmetica binaria, ovvero sulle stringhe di bit, senza scrivere i polinomi ad esse associati [la mia prof faceva direttamente così] Ora, il mio problema è proprio questo: non si tratta di stringhe di bit numerici? Quindi perchè non si usa la somma normale in binario (inteso come sistema di numerazione), ma si richiede un'operazione di somma "identica allo xor" per operare? |
Quote:
cmq spesso T. è poco rigoroso nell'esporre i concetti e l'abitudine di applicare operazioni di natura diversa agli stessi simboli,senza specificare che l'interpretazione è del tutto diversa,è frequente anche tra gli esperti. Spesso, dato un numero n espresso in base 2, si vede anche not(n). questo è un passaggio da "praticone",vuol dire semplicemente di sostituire 0 a 1 e 1 a 0 in tutte le cifre. In maniera analoga si trovano operatori di and, or ,xor applicati in maniera non corretta a numeri naturali. |
Mi aiutate con questo?
Dati i vettori u = i+3j-k e v = i-j scomporre u nella somma di un vettore perpendicolare a u e di uno avente al stessa direzione di v. ...non capisco il fatto dello scomporre... Grazie :) |
Ragazzi ho l'esame di geometria ed algebra lunedì ed avrei bisogno di qualche chiarimento... Gli esercizi li so fare piu o meno, vorrei solo sapere se sono corretti come procedimento :stordita:
Si considerino la retta r passante per i punti A(0,0,1) B(2,2,1) e la retta s passante per i punti C(2,0,2) D(0,2,0) a) Provare che le due rette sono complanari Due rette che io sappia sono complanari quando sono incidenti oppure sono parallele. Parallele non lo sono di sicuro, perchè i numeri direttori non sono dipendenti, ma sono incidenti e si intersecano nel punto P(1,1,1). b) Rappresentare il piano alfa contenente le rette r ed s In questo caso essendo le rette non parallele posso mettere a matrice i numeri direttori delle due rette con un punto che sostituisco in una delle rette(x-x0, y-y0 ecc). Nel caso fossero state parallele per esempio posso fare i due fasci di asse r ed s ed uguagliarli, mi viene fuori un sistema, lo risolvo e trovo un piano. In effetti facendo entrambi i procedimenti in questo caso mi trovo la stessa cosa c) Esiste una retta complanare ed ortogonale sia ad r che a s? Per essere sia complanare che ortogonale sia ad r che a s le rette dovebbero essere parallele, quindi in questo caso non esiste d) I 4 punti sono complanari? Quando devo fare un esercizio del genere penso di dover calcolare i vettori AB, AC, AD e mettendoli a matrice devo avere rango 1, sbaglio? :confused: Tralasciando i numeri, come ragionamento questi esercizi sono corretti? :D |
Ciao!
Sto ripassando il teorema di Taylor e relativa dimostrazione, ma non mi ritrovo più..l'avevo studiato un po' di fretta il mese scorso ( :muro: ), e adesso rileggendo gli appunti non capisco più qual è il filo logico della dimostrazione..non è che qualcuno ha voglia di riprenderla un attimo, anche a grandi linee? Se è una cosa impossibile da fare..niente, vedrò di capire quel che posso dagli appunti :fagiano: Grazie :) PS. PM Vibes, non ti ho ancora ringraziato per il titolo del libro sui limiti che mi hai consigliato qualche pagina fa..se non do l'esame entro natale, passo diretta alla Progetto e vedo sia il tuo che quello consigliato da ZioSilvio :stordita: |
Quote:
Per il primo grado si dimostra con la derivata come limite del rapporto incrementale, per il secondo ed i successivi applicando n-1 volte la regola di de l'hopital :stordita: Scusate se ho detto sciocchezze ma analisi la sto trascurando, perchè l'esame penso di darlo a fine gennaio |
Quote:
|
Quote:
quindi non riesco proprio a capire u = i+3j-k :mbe: |
Mah magari avete usato notazioni differenti, cmq credo sia il modo standard di rappresentare i vettori... in pratica i, j e k sono i versori corrispondenti ai 3 assi x, y, z dello spazio tridimensionale, cmq quella scrittura equivale a scrivere u = (1, 3, -1), v = (1, -1, 0) :)
|
Quote:
(1,3,-1)(a,b,c) + k(1,-1,0) = (1,3,-1) facendo un bel sistemino e ragionando un po' viene a+3b-c=0 a+k=1 b-k=3 c=-1 svolgendo il sistema viene a=13/2 b=-5/2 c=-1 k=-11/2 ed effettivamente (13/2,-5/2,-1)-11/2(1,-1,0) = (1,3,-1) quindi i due vettori richiesti sono (13/2, -5/2, -1) e (-11/2, 11/2, 0) :D |
mi è venuto un tremendo dubbio facendo un esercizio. Diciamo che conosco la trasformata di laplace di un certo segnale x(t). Posso dire qualcosa della trasformata di x^2(t)?:muro:
|
mi spiego meglio perche come la ho detta la risposta è fare la convoluzione della trasformata nota con se stessa. Allora: ho un blocco che da una relazione non lineare (x ingresso y uscita) nel tipo y=kx+tx^2. Riesco a trovare una approssimazione della funzione di trasferimento del segnale?
|
Quote:
se vuoi un legame lineare ingresso-uscita basta che applichi la serie di taylor arrestata al primo ordine. |
Quote:
|
Quote:
Vorrei descriverlo con laplace perche tutto il resto del sistema è descrivibile con laplace. Il problema è che è non lineare. Immagino di non si possa visto che è non lineare. Nel caso, siccome il coefficente di x^2 è pressoche nullo, lo linearizzo al primo ordine e ho visto che viene bene lo stesso. |
Quote:
|
Quote:
|
Qualcuno può spiegarmi l'uso del teorema di Cayley-Hamilton per invertire una matrice, facendo qualche esempio? Io l'enunciato l'ho capito, ma non riesco a metterlo in pratica :rolleyes:
|
Ragazzi un aiuto urgente: domani mattina ho compito e mi è venuto un dubbio atroce:
come faccio ad avere una rappresentazione cartesiana della somma di due sottospazi? in altre parole ho un esercizio che mi chiede quali tra i seguenti vettori è base della somma dei due sottospazi, e mi servirebbe credo avere la rappresentazione cartesiana, ed io ho sempre calcolato la somma in modo vettoriale come combinazione lineare di vettori :help: |
Quote:
1. calcolo una base qualsiasi per i due sottospazi (se già non ce l'hai); 2. unisco le due basi e calcolo la dimensione dello spazio che generano, ed elimino i vettori non necessari per avere una base; 3. tra gli insiemi di vettori proposti, scelgo ovviamente quelli di cardinalità pari alla dimensione di cui sopra, e che siano linearmente indipendenti (beh...); 4. verifico se i vettori dati sono tutti generati dalla base che ho ottenuto (o viceversa, verifico se i vettori della base ottenuta sono generati dai vettori forniti). |
Salve a tutti, ho un piccolo dubbio riguardo ad una funzione scritta in un modo "strano" su un libro di esercizi di analisi differenziale e calcolo integrale (il corso è di matematica generale).
Mi rendo conto che può sembrare molto semplice, ma una cosa del genere non l'ho mai trovata scritta da nessuna parte, e tutti i miei "colleghi" non hanno saputo dove mettere le mani, quindi mi rivolgo quì. Non sbeffeggiatemi troppo però :asd:. Mi ritrovo con un bel: Questo "mostro" equivale semplicemente a Grazie in anticipo |
Quote:
Allora, supponi che il polinomio caratteristico di una matrice quadrata A sia Se vuoi un esempio, ce n'è uno a pagina 32 di questo documento (il primo che mi è capitato con Google). |
Quote:
|
Bene, allora mi metto a fare lo studio funzione con l'anima in pace :asd:
GRAZIE. |
Quote:
comunque ho fatto l'esame, diciamo che era abbastanza difficile rispetto ai soliti compiti di geometria. Ho fatto comunque tutti gli esercizi ma ho un paio di dubbi: un esercizio mi chiedeva una retta appartenente ad un piano alfa dato, ortogonale ed incidente ad una retta r data. Io ho calcolato il fascio di piani di asse r e l'ho imposto ortogonale ad alfa, ed ho messo a sistema il piano che ho ottenuto con quello alfa iniziale, ho fatto bene? poi in un altro mi dava un piano rispetto ad un parametro h, e mi chiedeva per quali h questo piano apparteneva al fascio di una retta r(data). Io ho fatto in due modi, prima ho uguagliato il piano rispetto ad h al fascio di piani di asse r ed ho risolto di conseguenza, e poi ho provato anche a mettere a sistema i coefficienti della retta r(con anche i termini noti) ed il piano rispetto ad h, imponendo che il rango fosse 2. In entrambi i casi mi veniva non esiste nessun r, è possibile? grazie per l'aiuto che mi state dando :) |
Quote:
eh dai qualcuno che sbeffeggiasse lo dovevi pur trovare :D |
Quote:
A beneficio dell'utente che ha postato la domanda, aggiungo ancora che, quand'anche fosse stata f(x) = xlog(x^2) l'eguaglianza: f(x) = xlog(x^2) = 2xlogx sarebbe stata valida solo per x>0. Dunque, in quel caso, le due funzioni sarebbero state la stessa funzione non su tutto R\(0), ma solo in R+ ( si osservi, del resto, che 2xlogx non è definita per valori di x negativi o nulli...). |
Quote:
Io avrei considerato il vettore direttore di r e ne avrei fatto il prodotto vettoriale col vettore ortogonale al piano alfa, ottenendo un vettore direttore della retta cercata. Questo viene comodo se le rette le puoi dare in forma parametrizzata, però. Tu le potevi esprimere solo come sistemi di due equazioni lineari? Quote:
|
so che può essere una domanda ripetitiva ma...sto cercando di capire l'integrazione per sostituzione..qualcuno può farmi qualche esempio che così capisco meglio???
Tnks |
Quote:
|
Quote:
P.S: una altra cosa da "digerire" e capire la "funzione integrale" e la sua rappresentazione cartesiana |
Quote:
integrale indefinito di : [e^(2x)]*x*dx posto: e^x=t => x=lnt => dx=(1\t) dt risulta integrale indefinito di: [t^(2)*lnt*dt] \ t = integrale indefinito di: t*lnt*dt e risolvi rispetto alla variabile t ( per parti in questo caso, sai integrare per parti? ) facile facile, se poi hai degli estremi di integrazione devi rivalutare anche quelli in funzione della nuova variabile. non so se esiste un teorema che dimostra come la risoluzione per sostituzione di questi integrali sia valida, paradossalmente so dirti che esiste e si dimostra per gli integrali doppi. |
Quote:
Tnks cmq per la pazienza |
Tutti gli orari sono GMT +1. Ora sono le: 20:48. |
Powered by vBulletin® Version 3.6.4
Copyright ©2000 - 2023, Jelsoft Enterprises Ltd.
Hardware Upgrade S.r.l.